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Support Vector Machine for Acoustic Scene Classification Algorithm
Research Based on Multi-Features Fusion
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Abstract: For the sound environment dataset of the DCASE 2017 Challenge, Mel frequency cepstral
coefficients (MFCC), short-time energy (SE). acoustic event likelihood features (AELF), and mute
time (MT) features were extracted to form a multi-features fusion matrix. Comparing various kernel
functions and optimization algorithms, radial basis function kernel (RK) was finally selected to establish
the support vector machine (SVM) model, and cross validation (CV) method was utilized to optimize
SVM parameters and to classify 15 acoustic scenes. The experimental results show that the classification
accuracy of grocery store and office can reach more than 90%, and the average classification accuracy
reaches 71. 11%, which is much higher than the average classification accuracy of 61% of the baseline
system given in the challenge.
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