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摘　要：针对ＤＣＡＳＥ２０１７挑战赛的声场环境数据集，提取梅尔频率倒谱系数（ＭＦＣＣ）、短时能量（ＳＥ）、声学事件

似然特征（ＡＥＬＦ）、静音时间（ＭＴ）特征，组成多特征融合矩阵，通过对比多种核函数和寻优算法，最终选取高斯径

向基核函数（ＲＫ）建立支持向量机（ＳＶＭ）模型，采用交叉验证（ＣＶ）方法进行ＳＶＭ 参数寻优，对１５种声学场景进

行分类．实验结果表明，杂货店、办公室的分类准确性达到了９０％以上，平均分类准确性达到７１．１１％，远高于挑战

赛的基线系统６１％的平均分类准确性．
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　　声音中携带了日常生活环境和物理事件中的大
量信息．人类所固有的能力使得我们可以通过声音
感知所处环境，比如嘈杂的街区、安静的图书馆．人
类还可以通过识别独立的音源来推断出所处的环境

和即将发生的事情，比如汽车的刹车声、柔和的催眠

曲．随着手机等声音拾取设备的广泛使用，越来越
多的声音被记录下来．信号处理和人工智能技术的
发展，让机器可以自动感知并提取声场环境有用信
息，经过多维分析进行智能分类．
声学场景分类（ａｃｏｕｓｔｉｃ　ｓｃｅｎｅ　ｃｌａｓｓｉｆｉｃａｔｉｏｎ，
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ＡＳＣ）是指利用信号处理和机器学习算法，通过对输
入音频信号的感知，对音频流识别出其产生环境，并
标注语义标签［１］．声学场景信号处理涉及到数字信
号处理、声学、听觉心理学、人工智能等多学科领域，
是一门综合性很强的交叉学科．
１９９７年由麻省理工学院（ＭＩＴ）Ｓａｗｈｎｅｙ和 Ｍａｅｓ
发表的技术报告［２］最早记录了ＡＳＣ的分类．他们录
制的音频来自于语音、地铁和交通，利用卷积神经网
络（ｒｅｃｕｒｒｅｎｔ　ｎｅｕｒａｌ　ｎｅｔｗｏｒｋ，ＲＮＮ）和最邻近规则（Ｋ－
ｎｅａｒｅｓｔ　ｎｅｉｇｈｂｏｒ，ＫＮＮ）算法对特征和类别进行建模，
实现总体分类正确率６８％．Ｂａｌｌａｓ［３］利用实验心理学
研究发现，声学事件的识别速度和准确率与激励的声
学属性有关系，例如激励出现的频率、是否有某种物
理诱因或者声音先验知识的影响．Ｐｅｌｔｏｎｅｎ等［４］通过
在２５个音频场景中的实验统计，得出人类的分辨能
力超过７０％．他们认为，人类通过典型声学事件的识
别来认知声学场景．Ｅｒｏｎｅｎ等［５］在ＭＩＴ早期工作成果
基础上，更关注于局部和全局特征．ＭＦＣＣ描述音频信
号的局部频谱包络，ＧＭＭｓ来对 ＭＦＣＣ的分布进行统
计，继而用ＨＭＭｓ引导ＧＭＭｓ时间上的进化，这种算
法在１８个场景分类中取得了５８％的正确率．
声学场景分类的研究具有重要的应用价值．通

过麦克风实时录入音频，识别声场环境，自动对音频
文件分配对应元数据，进而对声学场景进行渲染，作
为视频的必要补充，可以提高ＶＲ／ＡＲ的沉浸感［６］．
数字音频档案迅速增长，这些海量的数据中包含了
各种各样的语音、音乐、动物声、城市环境声等等，目
前这些音频档案的利用率远远低于文本和图像档

案，利用机器学习方法对其中的声学场景进行分类，
可以挖掘出大量的有用信息［７］．智能手机［８］、导航
机器人［９］可以持续感知周围声场变化，从而自动切
换场景模式或提供定制信息．智能助听器［１０］、智能
轮椅［１１］可以基于室内室外的环境来调节相应的功

能，帮助残障人士更方便的生活．
声学场景相对于语音和音乐，没有持续和清晰

的谐波成分，包含了更加广泛的声学事件以及相当
丰富多样的信号特征，因此对于机器监听系统来说，
目前还无法精确实现对环境的分类．声学场景分类
最常见的方法是提取声学场景本身的时域、频域特
征，例如基于人耳听觉特性梅尔频谱系数（Ｍｅｌ－ｆｒｅ－
ｑｕｅｎｃｙ　ｃｅｐｓｔｒａｌ　ｃｏｅｆｆｉｃｉｅｎｔｓ，ＭＦＣＣ）特征［１２］、能量
特征、频谱特征［１３］等，以及基于这些特征的融合与
改进［１４］，但是寻找新的特征非常困难，需要不断的

进行尝试．此外还有利用典型声学事件及其特征［１５］

的识别作为分类依据的方法，但是该方法需要对大量
的声学环境中包含的事件进行统计分析［１６］，从而得
到典型声学事件及其占比关系［１７］．当多种声音同时
出现或者声音被环境扭曲时，声学事件的识别本身就
是个难以解决的问题［１８］．深度神经网络也是近年来
较为流行的方法，构建更大、更复杂的神经网络，对大
数据集进行训练和测试．但是这种方法需要很高的
硬件配置，而且模型处于“黑箱状态”，难以理解内部
机制，提升系统性能存在困难．针对普遍使用的声学
场景特征，采用隐马尔科夫模型（ｈｉｄｄｅｎ　Ｍａｒｋｏｖ
ｍｏｄｅｌ　ＨＭＭｓ，ＨＭＭｓ）［１３］、高斯混合模型（Ｇａｕｓｓｉ－
ａｎ　ｍｉｘｔｕｒｅ　ｍｏｄｅｌｓ，ＧＭＭｓ）［１９］、支持向量机（ｓｕｐ－
ｐｏｒｔ　ｖｅｃｔｏｒ　ｍａｃｈｉｎｅ，ＳＶＭ）［２０］等机器学习方法建立
声学模型作为分类器，也是场景分类的主流方法．
本文提出了一种基于多特征融合的ＳＶＭ 算法

模型，该算法针对声场环境数据集，提取 ＭＦＣＣ、

ＳＥ、ＡＥＬＦ、ＭＴ特征，组成多特征融合矩阵，通过对
比多种核函数和寻优算法，最终选取ＲＫ核函数建
立ＳＶＭ 模型，采用ＣＶ方法进行ＳＶＭ 参数寻优，
对１５种声学场景进行分类．

１　多特征提取及融合

１．１　梅尔频率倒谱系数（Ｍｅｌ　ｆｒｅｑｕｅｎｃｙ　ｃｅｐｓｔｒａｌ　ｃｏ－
ｅｆｆｉｃｉｅｎｔｓ，ＭＦＣＣ）

　　ＭＦＣＣ是一种广泛应用于音频场景和语音识
别的特征参数［２１］．Ｍｅｌ标度描述了人耳频率的非线
性特性，它与频率ｆ的关系可用式（１）近似表示为

ｆｍｅｌ（ｆ）＝２　５９５ｌｇ　１＋
ｆ（ ）７００

． （１）

图１　ＭＦＣＣ提取流程图

Ｆｉｇ．１　Ｅｘｔｒａｃｔｉｏｎ　ｆｌｏｗｃｈａｒｔ　ｏｆ　ＭＦＣＣ

输入的声学场景音频信号进行预加重、分帧、加
窗等处理后，对各帧信号进行快速傅里叶变换，并对
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得到的频谱取模平方，即可得到信号的功率谱．然
后将其通过梅尔滤波器组．将频谱按人耳敏感程度
分为多个 Ｍｅｌ滤波器组，采用的滤波器为三角滤波
器，中心频率ｆ（ｍ），ｍ＝１，２，…，Ｍ，Ｍ 通常取２２～
２６．如式（２）所示．

Ｈｍ（ｋ）＝

０ ｋ＜ｆ（ｍ－１）

ｋ－ｆ（ｍ－１）
ｆ（ｍ）－ｆ（ｍ－１）

ｆ（ｍ－１）≤ｋ≤ｆ（ｍ）

ｆ（ｍ＋１）－ｋ
ｆ（ｍ＋１）－ｆ（ｍ）

ｆ（ｍ）≤ｋ≤ｆ（ｍ＋１）

０ ｋ＞ｆ（ｍ＋１

烅

烄

烆 ）

．

（２）
式中：ｍ为滤波器数目；ｆ（ｍ）为ｍ＋２个 Ｍｅｌ间隔
频率［２２］．
经过梅尔滤波器后得到了平滑化的音频信号，

对其进行梅尔倒谱分析．对每个 Ｍｅｌ滤波器的输出
取对数，得到对应的对数功率谱，然后对其作离散余
弦变换，如式（３）所示．

Ｃ（ｎ）＝∑
Ｎ－１

ｍ＝０
ｓ（ｍ）ｃｏｓπｎ　ｍ－（ ）０．５（ ）Ｍ

，

ｎ＝１，２，…，Ｌ． （３）
　　最后与归一化倒谱提升窗口相乘，求取一阶与
二阶差分参数，合并后去除首尾一阶差分系数为０
的两帧，即得到声学场景音频的 ＭＦＣＣ特征系数．
１．２　短时能量（ｓｈｏｒｔ－ｔｉｍｅ　ｅｎｅｒｇｙ，ＳＥ）
音频信号的能量随着时间的变化而变化，环境

中主要包含的声音事件和噪声的区别可以体现在他

们的能量上．由于不同的声音类型具有不同的能
量，且音频信号是非平稳的，可以引入短时能量作
为音频信号幅度及能量上的一个特征，其表达式
如式（４）所示．

Ｅｎ ＝∑
Ｎ－１

ｍ＝０
ｘ２ｎ（ｍ） ． （４）

式中：ｘｎ（ｍ）为输入的第ｎ帧信号；Ｎ 为示帧长；Ｅｎ
为第ｎ帧信号的能量，即短时能量．
１．３　声学事件似然特征（ａｃｏｕｓｔｉｃ　ｅｖｅｎｔ　ｌｉｋｅｌｉｈｏｏｄ

ｆｅａｔｕｒｅｓ，ＡＥＬＦ）

　　声学事件是指能够引起人们感知注意的一段单
一完整的短时连续声音信号．在特定的场景中会有
特定的声学事件出现，并且每种场景会有出现可能
性较高或次数较多的某些声学事件，因此可以提取
声学事件的特征，并将其与全部场景的音频进行比
对，得到一个似然矩阵作为新的音频特征．
对１５种场景中的主要声学事件进行统计，共有

２４种，分别为：海浪声、风声、鸟叫声、说话声、音乐
声、汽车引擎声、提示音声、汽车转向灯声、汽车经过
声、溪水声、脚步声、物品碰撞声、自来水声、餐具碰
撞声、洗衣机声、洗餐具声、树叶声、翻书声、地铁运
行声、鼠标点击声、鸡鸣声、雨声、汽车经过声、车厢
内平稳行驶声，其余声音基本可视为噪声．
由于声学事件音频信号样点之间存在相关性，

因此一个采样值可利用若干个过去的声学事件音频

采样值的线性组合来逼近，得到一组唯一的预测系
数，即线性预测系数（ＬＰＣ）．为了提高特征参数的
稳定性，本文对声学事件音频信号求倒谱，用线性预
测倒谱系数（ＬＰＣＣ）提取声学事件特征．

图２　声学事件似然特征提取流程

Ｆｉｇ．２　Ｅｘｔｒａｃｔｉｏｎ　ｐｒｏｃｅｓｓ　ｏｆ　ａｃｏｕｓｔｉｃ　ｅｖｅｎｔ　ｌｉｋｅｌｉｈｏｏｄ　ｆｅａｔｕｒｅｓ

１．４　静音时间（ｍｕｔｅ　ｔｉｍｅ，ＭＴ）
实验过程中发现，在一些室内场景中，整体较安静，

音频背景声音的静音时间较长，可能造成某些音频特征
的不准确．统计１５种场景的静音情况，如表１所示．

表１　所有场景静音情况

Ｔａｂ．１　Ｍｕｔｅ　ｃｏｎｄｉｔｉｏｎ　ｏｆ　ａｌｌ　ｓｃｅｎｅｓ

有静音时间的场景 无静音时间的场景

咖啡厅／餐厅、汽车、森林小路、
家、图书馆、办公室、公园

海滩、公交车、市中心、杂货店、
地铁站、住宅区、火车、有轨电车

本文引入静音时间的检测，将其作为一个描述
音频的新特征．在训练集每一类室内场景音频中，
分别截取５０段音频没有任何明显声学事件的静音
片段，将其幅值取平均值，记作Ｕｌｅｖｅｌ．检测全部声音
片段中小于或等于此Ｕｌｅｖｅｌ值的时刻，作为对音频的
静音时刻的描述，然后将所有音频中低于Ｕｌｅｖｅｌ的值
置为０，得到新的音频描述矩阵．其公式表达如下．

Ｘ（ｔ）＝

ａ１１ … ａ１ｊ
  

ａｉ１ … ａｉ

熿

燀

燄

燅ｊ
＝
ａｉｊ，ａｉｊ ＞Ｕｌｅｖｅｌ
０，ａｉｊ ≤Ｕ烅
烄

烆 ｌｅｖｅｌ
．（５）

式中：Ｘ（ｔ）为信号幅值矩阵；ａｉｊ为每一帧的幅值，检
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测其中０的个数，即可得到 ＭＴ参数．
１．５　特征融合
以上４个特征中，ＭＦＣＣ代表频域特征，ＳＥ是

时域的典型特征，两者互相补充．ＡＥＬＦ反映了声
学场景中所包含事件，ＭＴ则描述了音频中安静程
度，这两个特征各自独立，分别反映了声学场景特征
不同的方面．将各个特征提取结果分别归一化，并
以列向量形式进行组合，从而实现对声学场景音频
特征更加全面的描述．

Ｆ＝ ［ ］ＭＦＣＣ　ＳＥ　ＡＥＬＦ　ＭＴ ． （６）
式中：ＭＦＣＣ取５２维，ＳＥ取１维，ＡＥＬＦ取１６维，

ＭＴ取１维，共同构成７０维的特征融合矩阵Ｆ．

２　支持向量机分类器及其参数选择

２．１　支持向量机分类器原理
支持向量机（ｓｕｐｐｏｒｔ　ｖｅｃｔｏｒ　ｍａｃｈｉｎｅ，ＳＶＭ）作为机

器学习方法的主流技术之一，具有较好的分类性能．
声学场景音频数据属于复杂的非线性分布，无

法在低维度找出一个线性决策边界，需要通过向量积
的方法将数据从低维度映射到高维度，进而在高维度
中寻找一个最优分类函数．计算两向量内积的方法称
为核函数［２３］，本文采用训练集和测试集的内积〈Φ（ｘ）×
Φ（Ｚ）〉来作为决策规则，核函数表达式如式（７）．

Ｋ（ｘ，ｚ）＝ 〈Φ（ｘ）×Φ（ｚ）〉． （７）
非线性分类下的优化问题如式（８）所示，

ｍｉｎ
α

１
２∑

ｎ

ｉ，ｊ＝１
αｉαｊｙｉｙｊＫ（ｘｉ，ｚｉ）－∑

ｎ

ｉ＝１
αｉ． （８）

最优分类决策函数用符号函数判定为

ｆ（ｘ）＝ｓｇ ｛ｎ∑
ｎ

ｉ＝１
αｉｙｉＫ（ｘｉ，ｙｉ）＋ ｝ｂ ． （９）

常用的核函数Ｋ（ｘ，ｚ）有以下几种．
① 线性核函数（ｌｉｎｅａｒ　Ｋｅｒｎｅｌ，ＬＫ）：

Ｋ（ｘ，ｚ）＝ 〈ｘ，ｚ〉． （１０）

　　② 多项式核函数（ｐｏｌｙｎｏｍｉａｌ　Ｋｅｒｎｅｌ，ＰＫ）：

Ｋ（ｘ，ｚ）＝ （〈ｘ，ｚ〉＋Ｒ）ｄ． （１１）

　　③ 高斯径向基核函数（ＲＢＦ　Ｋｅｒｎｅｌ，ＲＫ）：

Ｋ（ｘ，ｚ）＝ｅｘｐ（－ｇ‖ｘ－ｚ‖２）． （１２）
式中ｄ，ｇ为支持向量机核函数的参数．
２．２　ＳＶＭ三种寻优算法
合理的设置支持向量机的参数，能有效地提高

ＳＶＭ分类器的分类精度．在核函数中主要有２个
参数，即惩罚参数ｃ和核函数中的ｇａｍｍａ参数ｇ．
进行参数寻优的目的是找到能使分类效果较好的参

数对（ｃ，ｇ），使得分类器能精确预测未知的数据．
① 交叉验证寻优算法（ｃｒｏｓｓ　ｖａｌｉｄａｔｉｏｎ，ＣＶ）．
本文将声学场景的训练素材按３∶１分成两部

分，其中３份是已知声学场景类型，进行ＳＶＭ 模型
的训练，而一份被认为是未知的，利用这个未知部分
的音频数据预测分类器的性能［２４］．本文采用网格
搜索，通过对各种可能的（ｃ，ｇ）组合来寻找最优的声
学场景分类性能．通过这种交叉验证方法，得到预
测精确度最高的参数对（ｃ，ｇ）．

② 遗传学寻优算法（ｇｅｎｅｔｉｃ　ａｌｇｏｒｉｔｈｍ，ＧＡ）．
美国 Ｍｉｃｈｉｇａｎ大学的 Ｈｏｌｌａｎｄ教授提出了基于

自然进化理论的遗传学算法［２４］．本文将声学场景训
练音频按３∶１分成两部分，其中未知的一部分设为
种群，设定种群的进化代数为１００，种群数量为２０，参
数ｃ和ｇ是算法中的交叉概率和变异概率，取值范围
为［０，１００］．按照适应度计算法则，计算初始参数ｃ和

ｇ下种群中每个个体的初始适应度［２０］．根据进化的代
数，执行选择算子，交叉算子和变异算子的操作后产生
最优的个体，将个体重新插入到种群中产生新的后代，
若当代种群个体的适应度高于上一代个体，则更新个
体的适应度，最后得到最优适应度下的（ｂｅｓｔｃ，ｂｅｓｔｇ）．

③ 粒子群寻优算法（ｐａｒｔｉｃｌｅ　ｓｗａｒｍ　ｏｐｔｉｍｉｚａ－
ｔｉｏｎ，ＰＳＯ）．
粒子群寻优算法由 Ｋｅｎｎｅｄｙ和 Ｅｂｅｒｈａｒｔ于

１９９５年提出，它的基本概念源于对人工生命和鸟群
捕食行为的研究［２５］．首先设定种群的数量和进化
代数初始值，参数ｃ和ｇ 最大值为１００，最小值为

０．１，使用参数ｃ和ｇ初始化种群的位置和粒子的速
度及位置，计算此时种群和个体的初始适应度．根
据设定的进化代数和种群数量进行迭代更新，判断
粒子的速度和种群当前的位置是否高于上次迭代得

到的值，若高于则更新该值，即更新参数ｃ和ｇ，计
算此时的适应度．遍历上述结果中得到的适应度，
确定最高适应度下的最优解（ｂｅｓｔｃ，ｂｅｓｔｇ）．

３　实验数据集及基线系统

３．１　实验数据集
本文所用训练和测试集来自于ＩＥＥＥ音频与声

学协会举办的ＤＣＡＳＥ２０１７（声学场景和事件检测
分类挑战赛）公开数据集．该数据集由芬兰坦佩雷
理 工 大 学 （Ｔａｍｐｅｒｅ　Ｕｎｉｖｅｒｓｉｔｙ　ｏｆ　Ｔｅｃｈｎｏｌｏｇｙ，

２０１５．０６－２０１６．０１）收录，包括１５类日常生活的环
境和测试集两部分．相对于２０１６年挑战赛的３０ｓ
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素材，２０１７年每段的素材长度缩减到１０ｓ，这导致
其中所包含的音频信息大大减少，无论对人类还
是机器都是更难的挑战．录音中包含了大量的声
学事件，其中包括鸟叫、风声等自然音源，人的谈
笑声、脚步声等人类活动音源，清洗杯盘、推拉抽
屉、汽车马达声等物品发出的音源［１９］．声学场景
类型如图３所示．

图３　音频数据集结构图

Ｆｉｇ．３　Ｓｔｒｕｃｔｕｒｅ　ｄｉａｇｒａｍ　ｏｆ　ａｕｄｉｏ　ｄａｔａｓｅｔ

３．２　基线系统（ｂａｓｅｌｉｎｅ　ｓｙｓｔｅｍ）
在ＤＣＡＳＥ２０１７官方网站中给出了一个采用深

度学习的基线系统（ｂａｓｅｌｉｎｅ　ｓｙｓｔｅｍ），这也是目前
较为常用的方法之一．该基线系统采用多层感知器
进行架构，将对数梅尔能量作为特征，矢量长度为

２００，使用包含两层密集层（每层５０个隐藏单元和

２０％ｄｒｏｐｏｕｔ）的神经网络训练２００个ｅｐｏｃｈ，分类
决策为基于ｓｏｆｔｍａｘ类型的网络输出层．最终得到
测试集的平均准确率为６１％．

４　实验结果及分析

４．１　核函数选取实验结果及分析
利用３种寻优算法对比ＳＶＭ 的常用核函数，

得到的平均预测准确率如图４所示．在每一种寻优
算法下，ＲＫ核函数得到的平均分类预测准确度都
是最高，达到７５％以上，说明对于声学场景，ＲＫ核
函数的分类性能最好，因此本文优先选择ＲＫ作为

ＳＶＭ模型的核函数．

图４　３种寻优算法下不同核函数ＳＶＭ分类预测准确率

Ｆｉｇ．４　Ｐｒｅｄｉｃｔｉｏｎ　ａｃｃｕｒａｃｙ　ｏｆ　ＳＶＭ　ｃｌａｓｓｉｆｉｃａｔｉｏｎ　ｗｉｔｈ　ｄｉｆｆｅｒｅｎｔ

Ｋｅｒｎｅｌ　ｆｕｎｃｔｉｏｎｓ　ｕｎｄｅｒ　ｔｈｒｅｅ　ｏｐｔｉｍｉｚａｔｉｏｎ　ａｌｇｏｒｉｔｈｍｓ

４．２　ＳＶＭ模型参数寻优实验结果及分析
以ＲＫ为核函数构造ＳＶＭ 模型，利用训练集

比较３种寻优方法，得到最优（ｃ，ｇ）如表２所示，训
练数据的预测最高准确率都可以达到９０％以上．

表２　３种寻优算法下最优参数对（ｃ，ｇ）

Ｔａｂ．２　Ｏｐｔｉｍａｌ　ｐａｒａｍｅｔｅｒ　ｐａｉｒ（ｃ，ｇ）ｕｎｄｅｒ

ｔｈｒｅｅ　ｏｐｔｉｍｉｚａｔｉｏｎ　ａｌｇｏｒｉｔｈｍｓ

寻优算法 ｃ　 ｇ 训练集准确率／％

ＣＶ　 ５．２７８　０　 ０．３２９　９　 ９３．８２
ＧＡ　 ９．８６１　９　 １．７７３　７　 ９３．７０
ＰＳＯ　 １００　 ０．８５０　０　 ９１．３０

３种寻优算法的预测平均准确率相差较小，尤其
是ＣＶ算法和ＧＡ算法，但是ＣＡ算法用时较短，ＰＳＯ
算法其次，ＧＡ算法耗时最长．ＣＡ的网格寻优过程中，
随机数据集分成两部分作为训练和预评估，最后记录
每种最高准确率下的参数对（ｃ，ｇ），处理和寻优的思路
和过程较为简单；ＧＡ算法寻优时需要进行多次迭代，
迭代过程中还会有选择、交叉、变异等操作，参数选择
需要大量经验，从而使寻优的过程变得复杂，因此ＧＡ
算法编程复杂，耗时长；而ＰＳＯ算法在处理本文所用声
学场景音频时，分类准确性比前两者略低．因此在综合
考虑预测准确性、算法实现复杂程度、程序运行时间等
情况下，本文优先采用ＣＶ算法进行参数寻优．
４．３　声学场景测试集分类结果及分析
统计每种类别的最高的识别准确率如图５所

示．本文针对声场环境提取 ＭＦＣＣ、ＳＥ、ＡＥＬＦ、ＭＴ
特征，组成多特征融合矩阵，选取 ＲＫ核函数建立

ＳＶＭ模型，采用ＣＶ方法进行ＳＶＭ 参数寻优．由
图５可知，通过本文的方法进行声学场景分类，杂货
店、办公室的分类正确性达到了９０％以上，平均分
类准确性达到７１．１１％，远高于挑战赛给出的基线
系统（ｂａｓｅｌｉｎｅ　ｓｙｓｔｅｍ）６１％的平均分类准确性．
为了能够深入分析分类结果，本文将每一类训

练集的分类结果进行逐一统计，表格颜色越深，代表
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判断为此类的个数越多，表格中的数字即该类声学
场景音频的具体判断个数，如图６所示．

图５　声学场景测试集分类结果

Ｆｉｇ．５　Ａｃｏｕｓｔｉｃ　ｓｃｅｎｅ　ｃｌａｓｓｉｆｉｃａｔｉｏｎ　ｒｅｓｕｌｔｓ　ｏｆ　ｔｈｅ　ｔｅｓｔ　ｓｅｔ

图６　声学场景测试集分类结果混淆矩阵

Ｆｉｇ．６　Ａ　ｃｏｎｆｕｓｉｏｎ　ｍａｔｒｉｘ　ｏｆ　ａｃｏｕｓｔｉｃ　ｓｃｅｎｅ　ｃｌａｓｓｉｆｉｃａｔｉｏｎ　ｔｅｓｔ　ｓｅｔ　ｒｅｓｕｌｔ

图６可以明显观察到，每一类声学场景的大部
分音频都得到了正确的分类，整体效果较好，说明选
用的针对声学场景的特征融合矩阵、建立的ＳＶＭ
模型及其参数是非常有效的．分析具体原因如下．

① 本文选用了基于频谱能量的 ＭＦＣＣ参数和
基于时域的ＳＥ参数，两者之间相关性不大，体现了
声场环境的不同特征．

② 通过提取２４个声学事件的特征，并将其在１５
个声学场景求取似然估计距离，得到ＡＥＬＦ特征．分
类准确度高的类别，如办公室、杂货店，其ＡＥＬＦ较独
特．办公室整体较安静，杂音较少；而杂货店则相反，
整体环境较为嘈杂，声学事件丰富，远近不同的说话
声、音乐声，以及物体碰撞声、提示音等遍布整个音频．
该特征很好的利用了声学事件对分类特性的影响．

③ 由于测试集音频时长只有１０ｓ，因此音频中的
大量的静音片段不利于声学场景特征的提取．本文通
过统计５００个片段的静音部分平均幅值，将原始音频
信号重新清洗，ＭＴ特征有效弥补了静音的影响．

④ 充分利用４　６８０段训练集来对比ＣＶ、ＧＡ、

ＰＳＯ三种寻优方法，进行以ＬＫ、ＰＫ、ＲＫ为核函数

的ＳＶＭ模型比较，最终选择ＣＶ寻优方法和ＲＫ核
函数，测试数据规模大，选用的方法更有说服力．
但其中仍有误判的情况存在，分析具体原因如下．
① 当不同的场景中含有相似的声学事件时，例

如火车车厢与有轨电车内有着相似的平稳行车声、
说话声以及一些物品碰撞的声音，造成这两者相互
误判的个数比其它类别略多．

② 分类准确度较低的类别，如餐厅／咖啡厅、图书
馆，声学特征不明显．餐厅／咖啡厅中整体环境嘈杂，含
有大量人们的交谈说话声、背景音乐声和杂音，而这与
地铁站在没有地铁通过时的声学环境较为类似．而图
书馆这一类别的音频嘈杂程度不同，安静的部分与家、
办公室的整体环境较相似，但嘈杂的图书馆环境会有
说话声，可能与地铁站相似度较高，因此易被误判．

③ 当测试集音频与训练集内容差别较大，也会
造成误判．例如海滩类别，在训练集中含有的声学
事件大多为海浪声，但是测试集的某些音频中儿童
嬉闹的声音更为明显，海浪声音被弱化，这就可能使
其与住宅区的声学元素更相似，造成误判．

５　结　论

本文将ＤＣＡＳＥ２０１７挑战赛的声学场景音频作
为数据集，提出了一种基于多特征融合的ＳＶＭ算法
模型．对全部１５种场景音频提取 ＭＦＣＣ、ＳＥ、ＡＥＬＦ、

ＭＴ　４种具有独立性和互补性的特征，将其组合为多
特征融合矩阵．并且讨论了多种核函数和寻优算法，
进行分类效果对比后，选取ＲＫ核函数建立ＳＶＭ模
型，ＣＶ方法进行ＳＶＭ参数寻优，最终使得平均分类
准确性达到了７１．１１％，远高于挑战赛给出的基线系
统６１％的平均分类准确性，其中，杂货店、办公室的
分类准确性达到了９０％以上．针对几种准确性较差
的声场，未来的研究要对其声学特征进一步深入挖
掘，寻找新的方法提高算法分类的正确率．
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